Locomotion of Boneless Creatures with Distributed Control

TIM STRAUBINGER and DAVE PAGUREK

1 INTRODUCTION

We are interested in exploring whether we can achieve complex,
organized behaviours using a distributed network of localized con-
trollers that are tasked with collectively moving a soft body with no
rigid skeleton. Given various elastic and deformable body plans, we
would like to see what gaits emerge based on body shape and body
material properties. Through experimentation, we comment on the
effectiveness of genetic optimization over policy gradient optimiza-
tion, and the expressive capability of local controllers with limited
views of the world compared to single, comprehensive controllers.

2 RELATED WORK

Given a mesh, there are multiple ways one can allow a policy to
control the deformation of a mesh without skeletons. One option
is to allow the policy to directly deform the rest state of the mesh,
independent of the elasticity model one picks [Coros et al. 2012].
Alternatively, if mesh edges are modeled as springs, a controller can
change the rest length of those springs, either by finding optimal
lengths given a desired centre of mass [Tan et al. 2012] or by directly
controlling the rest length [Rojas et al. 2019].

The easiest way to integrate this with existing reinforcement
learning algorithms is to implement our test scenario as an Ope-
nAI Gym environment [Brockman et al. 2016]. The physics library
Box2D [Catto 2020] can be used to implement the mass-spring net-
works and friction simulations. Box2D has been used in existing
OpenAI Gym environments, making it a safe choice for implemen-
tation.

Optimization can be done using a variety of reinforcement learn-
ing algorithms, such as Proximal Policy Optimization (PPO) [Schul-
man et al. 2017] from the family of policy gradient algorithms, and
gradient-free genetic algorithms [Such et al. 2017].

3 METHOD
3.1 Environment Setup

We implemented an OpenAl Gym [Brockman et al. 2016] envi-
ronment for our problem. A policy must control the muscles of a

Fig. 2. Muscle group centers, shown on the left, are responsible for con-
trolling the springs whose centers are closer to them than to other group
centers, shown on the right.

two-dimensional soft-bodied creature and get it to walk to the right
along a flat surface.

The soft-bodied creature is realized as a mass-spring network
in a Box2d [Catto 2020] physics simulation. The locations of the
masses and springs can be imported as the vertices and faces from
an OB]J file. At each vertex, a circular mass is created, where the
position in configuration space for the ith mass is the point X;.
Once moved, its world coordinate is referred to as x;. The masses
are given friction with the ground and are disallowed from having
any rotation, preventing them from spinning in place and thus from
acting as wheels. A total mass of 10kg is assigned to the creature,
distributed to masses proportional to the length of the shortest
spring attached to each mass. The ith spring S; = {a;, b;} is defined
by the two masses, indices a; and b;, that it connects. The length
of the spring in configuration space is L; = || Xq; — X, [|. While the
spring constants and damping constants vary between experimental
setups, they are held constant throughout the entire body and within
each experiment.

The creature must learn to move itself by dynamically adjusting
the rest lengths of its springs. However, the policy does not directly

2« Tim Straubinger and Dave Pagurek

control spring lengths. Instead, multiple nearby springs are com-
bined into a muscle group, which controls the lengths of all of its
springs according to a common pattern. The jth muscle group is
defined by a central point G; in configuration space. It is responsible
for controlling the springs s; € S whose configuration space center
points are closest to G;:

sj ={{ai,bi} € S| argming [|0.5(Xg; +Xp,) = Gill = j}. (1)

Specifically, a muscle group will attempt to skew its springs using

a linear transformation. A skew magnitude i/, skew axis 0, and scale

factor f must be provided as an action, producing the following
transformation T:

o ¢ [cos® —sind _ 1
T_[O 0} [sin& cos@]’ 0_0'1+1+exp(—f)' @

For each spring i € s;, a new target rest length is produced by
applying T to the spring’s endpoints in configuration space (i.e, their
locations in the rest pose), relative to the muscle group center, and
then measuring the Euclidean distance between them:

I = |IT(Xa, = Gj) = T(Xp, = Gl 3)

The actual rest length of the spring is updated to a linear combina-
tion of its previous rest length and the desired rest length, clamped
to a limited range compared to its configuration space length L;, to
add a level of smoothness:

I; « 0.51; + 0.5 min(1.2L;, max(0.8Ls, I;)). (@)

This aids against rapidly oscillating motion, a style which is consid-
ered to be qualitatively undesirable.

To produce ¥, 8, and f for each muscle group as an action, policies
are allowed to observe the spring lengths of all springs associated
with that muscle group. The policy receives no other information
throughout its execution.

The reward at each time step is the body’s horizontal center of
mass, relative to its starting position. The episode duration was
fixed within each experiment.

We tested policies that control two body plans: four-legged crea-
ture we dub the “tetrapus,” and a worm, shown in Figure 3.

3.2 Policy Representations

3.2.1 Global Policy. We implement and evaluate the performance of
a control policy Pgioba Which is both able to observe the state of the
entire creature as well as control the entire creature simultaneously.
This policy takes the lengths of all springs in the soft body as input
and produces deformation values ¢/, v, and f for every muscle group.
This control policy is implemented as a neural network with one
hidden layer containing 8 neurons and using the rectified linear unit
(ReLU) activation function. The learnable parameters of this policy
are the entries of the two weight matrices between the input, hidden,
and output layers. For training with Proximal Policy Optimization
(PPO), we extend this policy with random exploration by adding
Gaussian noise to the outputs of the network. The standard deviation
of this noise is given as an additional set of learnable parameters,
specifically consisting of one scalar for each of the three deformation
parameters of every muscle group. This two-layer neural network is
chosen for its simplicity as well as its generality, and to establish a
reasonable baseline against which to compare our distributed policy.

Fig. 3. Body plans controlled by our policies: tetrapus on top, worm on
bottom.

3.2.2 Distributed Policy. We additionally implement and experi-
ment with a distributed policy ¢g;s, which is best thought of as a
network of smaller, localized policies, rather than a single policy.
The distributed control policy contains one muscle controller ¢y uscle
for each muscle group in the creature. Each such muscle controller
receives as input only the lengths of those springs in its correspond-
ing muscle group, and produces as output the deformation values ¢,
0, and f for that muscle group alone. Specifically, for the jth muscle
group in the creature containing springs s;, the input to the muscle
controller ¢musdej is given by

oj = |llxa, =xp,ll|, {an,bn} €sj. ®)

Similar to the global policy @gjopal, this policy consists of a linear
mapping to an internal latent representation x; which is a point in
R3. A second linear mapping produces the 3 deformation values from
this latent representation. These two linear mappings constitute the
learnable parameters of each muscle controller.

We add an optional extension to this policy, which we simply
dub “communication,” wherein each muscle controller additionally
receives a weighted sum of the previous latent state of each muscle
controller that it is immediately adjacent to. The muscle controllers
adjacent to the controller ¢musclej are those whose muscle groups
share a common mass with the controller’s own muscle group, given
by

Aj=A{k|(Fab,c)[{a b} €sjA{ac}es]} 6)

The latent states of these controllers are summed using the con-
troller’s coefficient vector m; as

y] = Z mj,kxjprev‘ (7)

kEAj

Total Reward

[10 20 30 40 50 60
Generation

Fig. 4. Distribution of rewards per generation of tetrapodes using genetic
optimization. Each reward collected in each generation comes from a differ-
ent deterministic policy. Colours indicate each percentile of the population’s
performance. A black line is placed every 10 percentiles.

The second linear mapping is extended to accept both this sum of
neighbouring previous states y; and the original, current latent state
xj, from which the deformation parameters are then produced. This
communication adds the coefficients for the weighted summation
of neighbouring states as an additional learnable parameter.

During training, we found that many policies considered succesful
according to our reward metric had unnaturally jerky and rapid
oscillations in their movements. To avoid this, we limited the rate at
which phig;s, receives new observations to one in every 4 frames,
between which the previous deformation outputs are held constant.
In our subsequent comparisons of our different policies, phigiopar
was modified similary to facilitate a more fair comparison.

3.3 Optimization Methods

Given our various policy formulations, we also want to compare the
effectiveness of reinforcement learning using optimization methods
from two different families: policy gradient methods and genetic
methods. We optimize our policies using both the gradient-based
Proximal Policy Optimization (PPO) [Schulman et al. 2017], and
the gradient-free Genetic Algorithm (GA) [Such et al. 2017] with
asexual reproduction and elitism.

PPO trains stochastic policies, so for this method, the network
output is interpreted as the mean values of a Gaussian distribution,
and the standard deviations must additionally be learnt. Standard
deviations for each parameter begin at ¢ = 0.5 and are updated
as the policy learns. We use 10 rollouts per epoch, each lasting 30
simulated seconds at 30 steps per second.

Each iteration of our GA implementation takes a population of
N = 200 policies and performs one rollout with each. The perfor-
mance of each policy is quantified by the undiscounted cumulative
sum of rewards throughout the episode. The policies achieving the
single best reward persists to the next generation unchanged. The
remaining 199 future policies are created by randomly selecting
one of the top T = 10 policies and then adding a random jitter
Jj ~ U(-0.05,0.05) to each parameter in the policy’s neural net-
work. The policy parameters in the first iteration of the algorithm
are picked from U(-1,1).

Locomotion of Boneless Creatures with Distributed Control « 3

%3 ﬁe ‘-’;:2!
o@
3 2
gfa%’?:%ﬁ"
{ e]
!&“ 03e s,

215553
K

Fig. 5. Two different gaits produced using genetic optimization: one with a
high spring constant on the left, and one with a low spring constant on the
right.

4 RESULTS

Short animations of the results described here can be found in the
readme of our project on Github!.

4.1 Optimization Methods

After very few generations of the genetic algorithm, successful
gaits are consistently discovered that take both worm and tetrapus
body plans from one side of the screen to the other. This can be
seen in Figure 4, which shows the distribution of returns achieved
by members of the population in each generation of optimization.
Curiously, the top and bottom 10 percentiles appear to be over-
represented. It should be noted that the top-most line in this graph
is monotonically increasing, which is guaranteed by the combination
of the use of elitism (persisting the top individual without mutation)
in the GA and determinism of the environment. Figure 5 shows some
example gaits that are discovered when varying the springiness of
the muscle material.

Policies optimized with PPO seem more limited in the gaits they
discover. Movement is jittery and not as obviously periodic as is
seen in the policies produced using genetic optimization. We suspect
that this is due to the standard deviation in the trained stochastic
policy remaining high. This can be seen in Figure 7, showing at each
epoch the distribution of returns for multiple rollouts of the same
stochastic policy. For the tetrapus body plan, PPO was not able to
significantly reduce the variance in received rewards. Unlike the GA

!Codebase: https://github.com/davepagurek/boneless

https://github.com/davepagurek/boneless

4« Tim Straubinger and Dave Pagurek
Global Local With Communication Local Without Communication
10 A 10 A
5-/_/
B B B
© © ©
H H H
Q Q Q
o -4 o 0
5 s s
(s} (s} (s]
[[[
-5 =5 A
—10 - —-10 4
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Generation Generation Generation

Fig. 6. Distribution of rewards per epoch given a global policy, a set of local policies with the ability to communicate with neighbouring policies, and a set of

local policies without the ability to communicate. In this experiment, the monolithic policy ¢giopar Was modified to receive new state only every 4 frames,

similarly to @gis;-

Total Reward

Epoch

Fig. 7. Distribution of rewards per epoch of PPO optimization of the tetrapus.
Note that for a given epoch, all rewards are collected from multiple rollouts
of the same stochastic policy.

approach, PPO requires stochasticity in its policies for exploration,
but in a similar number of rollouts, it is not able to refine its policy
enough to consistently achieve high rewards.

4.2 Local Policy Control

To compare how effective distributed policy control can be, we op-
timized three types of policies for the worm body plan. First, we
optimized the monolothic policy with full knowledge and control,
Pglobal- Next, we optimized a set of distributed policies @g;5, with
communication. Finally, we also optimized a set of distributed poli-
cies @gis; Without communication. Figure 6 shows the distribution
of rewards across fifty generations of GA optimization using each
control scheme.

Both the global scheme and the local communication scheme
are able to create policies that achieve high rewards. This indicates
that distributed controllers are expressive enough to learn complex
movements. The removal of the ability of local policies to com-
municate significantly reduces the maximum achievable reward,

indicating that communication is essential if local policies are to
effectively work together to towards a goal.

We also note that the gaits demonstrated in the final generation
of this experiment are fairly similar to the gaits only a few gener-
ations in. Effective gaits are quickly discovered and remain stable
throughout the rest of the optimization. We acknowledge that these
results may not be due to the differences in policy designs alone and
may also be in part accounted for by different random initializations
resulting in better policies. Understanding this better would add to
our understanding of our distributed policy and the GA algorithm,
but would also require far greater computational resources.

5 FUTURE WORK

While the high standard deviation contributed to the weakness of
PPO for this task, we would like to see if this can be addressed.
A behaviour characteristic of a stochastic PPO-trained policy is
its jitteriness. This can perhaps be discouraged, for example, by
subtracting from the environment’s rewards when the creature
experiences high levels of jerk, aiming to encourage smoothness in
the policy.

We observed that the gaits which were found in each run of GA
seemed to be largely determined during the first, randomly initial-
ized population of policies. We did not observe major qualitative
changes in locomotion style in subsequent generations. This sug-
gests that our GA implementation may be limiting itself to local
minima in the policy space, and it would be preferable to be able to
reliably explore a larger variety of successful policies. Pursuing this
will likely require much larger population sizes and possibly other
well-documented extensions to the GA.

We tested our policies on a flat terrain for between 10 and 30 sim-
ulated seconds. Future experiments could train policies on varying
terrain for longer periods of time to try to achieve robustness. This

robustness can then be evaluated using the classic task of walking
while being pelted from all angles with cubes.

Finally, with our experiment infrastructure in place, we would
like to run experiments on a variety of other body plans. Our method
may be extended to allow the physical shape and material parame-
ters of the soft-bodied creature to be evolved in addition to its control
policy, and performing experiments with this approach would likely
allow us to evolve creatures that are physically better suited to their
environments and may yield more surprising and insightful physical
body plans and methods of locomotion that would readily not occur
to us as designers.

Locomotion of Boneless Creatures with Distributed Control « 5

REFERENCES

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. 2016. OpenAl Gym. arXiv:arXiv:1606.01540

Erin Catto. 2020. Box2D. https://box2d.org/.

Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian Schumacher,
Robert Sumner, and Markus Gross. 2012. Deformable Objects Alive! ACM Trans.
Graph. 31, 4, Article Article 69 (July 2012), 9 pages. https://doi.org/10.1145/2185520.
2185565

Junior Rojas, Stelian Coros, and Ladislav Kavan. 2019. Deep reinforcement learning for
2D soft bodylocomotion. In Conference on Neural Information Processing Systems.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.
Proximal Policy Optimization Algorithms. (07 2017).

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O.
Stanley, and Jeff Clune. 2017. Deep Neuroevolution: Genetic Algorithms Are a
Competitive Alternative for Training Deep Neural Networks for Reinforcement
Learning. arXiv:cs.NE/1712.06567

Jie Tan, Greg Turk, and C. Karen Liu. 2012. Soft Body Locomotion. ACM Trans. Graph. 31,
4, Article Article 26 (July 2012), 11 pages. https://doi.org/10.1145/2185520.2185522

http://arxiv.org/abs/arXiv:1606.01540
https://box2d.org/
https://doi.org/10.1145/2185520.2185565
https://doi.org/10.1145/2185520.2185565
http://arxiv.org/abs/cs.NE/1712.06567
https://doi.org/10.1145/2185520.2185522

	1 Introduction
	2 Related Work
	3 Method
	3.1 Environment Setup
	3.2 Policy Representations
	3.3 Optimization Methods

	4 Results
	4.1 Optimization Methods
	4.2 Local Policy Control

	5 Future Work
	References

