
Differentiable Shadow Rendering

Dave Pagurek and Jerry Yin
The University of British Columbia
{dpagurek,jerryyin}@cs.ubc.ca

1. Introduction
We propose a differentiable formulation for soft shadows

using shadow mapping, and implement it in a differentiable
renderer. Our implementation enables applications such as
optimizing a model with respect to its shadow. An example
task motivating this work is the algorithmic generation of
shadow art, in which a 3D shape produces different artist-
specified shadow shapes when lit from different angles. An
example of shadow art can be found on the cover of the book
Gödel, Escher, Bach [4]. Our goal is to find a reasonable
tradeoff in this optimization task between visual quality and
performance.

2. Related work
2.1. Shadow rendering

One of the first methods [13] of rendering shadows, still
used in real time applications today for its efficiency, is
shadow mapping. Shadow mapping accounts for the occlu-
sions of direct light from a point source. This involves ren-
dering a depth buffer, an image recording the depth of the
closest object at each pixel, from the perspective of a light.
To then check if a pixel is in shadow or not, one checks
whether or not the distance from the fragment at that pixel
to the light is further than the distance recorded in the depth
buffer.

Due to using point light sources, shadow mapping casts
hard, binary shadows, as each fragment of the scene either
has a direct line of sight to the light source or it does not.
Soft shadows from direct illumination occur as a result of
having area lights, where fragments may have direct, unoc-
cluded lines to some but not all points on the surface of the
light source. Random sampling of these points produces
a shadow penumbra [2], converging to the exact penum-
bra, but this is expensive to do for each fragment in the
scene. Algorithms to combine multiple shadow maps sam-
pled from the surface of a light exist [3], but can still suffer
from performance issues when enough samples are used to
get reasonably accurate estimates.

Other methods make assumptions to approximate light
sources and generate soft shadows more efficiently. If light

Figure 1. Effect of increasing softness parameters when render-
ing hard shadows in the forward pass using our differentiable for-
mulation. The top left image was rendered with γs = 0.01,
β = 50, σs = 0.5, σ = 10−5, and γ = 10−4. The rest
used γs = 2/3, β = 3, and σs = 2 × 104σ with σ val-
ues set to 10−5, 10−4, 10−3.2 respectively, and γ values set to
10−4, 10−3, 10−2.2 respectively.

sources are spheres, the amount of occlusion of the cone
from a fragment to the light source can be used to create a
shadow penumbra [1]. If, in addition to a shadow map, one
knows the closest distance from an almost-occluder to the
line from a fragment to the center of a light source, this dis-
tance can be used to approximate the cone occlusion [11].
Due to the minimal amount of information required and the
smooth shadows it produces, our smooth shadows are based
off of this method.

2.2. Shadow optimization

The problem of optimizing a model to produce a set of
shadows has been examined previously [9] using a voxel-
based model and simple lighting. In this formulation, shad-

1



ows are projected back onto the voxel grid, deleting voxels
that are outside the shadow volume. The resulting voxel
grid is then distorted to balance discrepancies introduced
by the voxels removed by other shadow angles.

2.3. Differential rendering

The more general task of taking the derivative of an im-
age with respect to scene parameters is called differentiable
rendering. Many methods ignore shadows, focusing in-
stead on calculating approximate occlusion derivatives at
edges [8, 5], using volume distributions [12], or using prob-
abilistic interpretations of mesh polygons [7]. Other meth-
ods attempt to make the whole physically-based rendering
pipeline differentiable [6, 10], supporting accurate shadows
at the cost of added complexity and longer render times to
reach an image that is reasonably free of noise.

3. Method
We add an approximate shadowing model to Soft Raster-

izer [7], an existing differentiable rendering system which
does not use a Monte Carlo approach.

3.1. Hard shadows

We begin by implementing a point light model, which
casts hard shadows. Traditionally, hard shadow mapping is
done in two passes: in the first pass, a shadow map image
is computed from the perspective of the light source, treat-
ing the light source as a separate “camera,” then the depth
of the closest fragment at each pixel is stored. Then, in
the second pass where the scene is rendered from the per-
spective of the scene camera, each fragment being shaded
determines whether or not it is in shadow by checking if
it is visible from the light’s perspective. This can be done
by transforming the position of the fragment being shaded
into the coordinate frame of the light camera, then sampling
the corresponding point from the shadow map to determine
the depth of the closest point that is hit along that line of
sight. If the closest point is closer than the fragment being
shaded, then the fragment being shaded is obscured by that
point and thus should be in shadow.

The depth map computation would not be differentiable
if we merely stored the closest depth. Instead, we store in
the shadow map a soft minimum depth over all triangles i.
Like Soft Rasterizer, we define the influence of each triangle
fj at point i to be probability map

Dij = sigmoid

(
δij ·

d2(i, j)

σ

)
, (1)

where σ is the sharpness parameter, δij is a sign indicator
(+1 for points inside the face, −1 otherwise), and d(i, j)
is some distance metric to fj’s edges. Our soft depth for-
mulation is similar to Soft Rasterizer’s soft formulation for

Figure 2. Visualization of the depth map.

aggregating colour C,

Iicolour = AS({Cj}) =
∑
j

wijC
i
j + wibCb, (2)

with weights
∑
j w

i
j + wib = 1 and

wij =
Dij exp(1/(zijγ))∑

k Dik exp(1/(zikγ)) + exp(1/(εγ))
, (3)

except we aggregate the depth values zij instead of colour:

Iidepth = AS({zj}) =
∑
j

wijz
i
j + wibzb. (4)

The parameter γ controls the sharpness of the aggrega-
tion, zb defines the depth of the background, which should
be a very large value, and ε controls the effect of the back-
ground. Figure 2 shows the depth map from the perspective
of the light that was used to render the top left image of
Figure 1.

During the second pass, merely sampling a single pixel
from the shadow map would also not be differentiable with
respect to the location being sampled. Therefore, we com-
pute a weighted sum of all pixels in the shadow map, with
weights corresponding to a 2D Gaussian distribution cen-
tred around the sampling point, normalized to sum to one.
Thus a shadow map sample from location (µx, µy) on map
S is

sample(S, µx, µy) =
∑

0≤i<W

∑
0≤j<H

λi,jS[i, j], (5)

where

λi,j =
exp

(
− (µx−i)2+(µy−j)2

2σs

)
∑

0≤i′<W
∑

0≤j′<H exp
(
− (µx−i′)2+(µy−j′)2

2σs

)
(6)

2



Figure 3. Point light sources are approximated as a sphere light with diameter D, whose true penumbra has a width W (a). The same
penumbra size is used to create a cone representing the penumbra, with both inner and outer penumbras (b), and with just an outer
penumbra (c).

and W,H are the width and height of the shadow map. In
the above form, it takes O(WH) time to compute a single
sample, however this process can be reduced to anO(1) one
at the cost of slightly less accurate gradients by truncating
all λi,j below a certain threshold to 0 (assuming σs is fixed).

The value of σs when defining the weights λi,j is al-
lowed to differ from the sharpness parameter σ; this σs
merely controls the effect of pixels close to the sampled
point. As σs → 0, our sampling formulation becomes equi-
valent to traditional one-hot sampling. Note that our formu-
lation becomes differentiable with respect to the sampling
point because µx and µy need not be aligned with any pixel.

There is one last computation in traditional shadow map-
ping which is not differentiable, which is the depth compar-
ison between the shaded fragment and the depth value sam-
pled from the map. Instead of a hard comparison, we use
a sigmoid function, which has the benefit of having a non-
zero derivative everywhere. Let dij denote the distance from
the shaded fragment to the light. Our differentiable shadow
term is

sij = sigmoid

(
1

γs
(sample(S, µx, µy)− dij) + β

)
, (7)

where γs controls the softness of the comparison, and β is
a bias value which can be used to adjust the value of the
shadow term for surfaces not in shadow. sij is close to 1 for
fragments not in shadow, and is close to 0 for fragments in
shadow. Note that when γs → 0, the shadow term becomes
equivalent to a traditional hard shadow term, and the role of
β becomes that of the bias term which is commonly used

to prevent shadow acne caused by self-shadowing (which
in turn results from numerical imprecision). Again, γs is
allowed to differ from the aggregation sharpness term γ.

In the end, the shadow term is then multiplied with the
direct lighting term, yielding the final colour

Cij,total = sijC
i
j,direct + Cambient. (8)

3.2. Soft shadows

Soft shadows due to direct light sources occur when a
light source has finite surface area that can be partially oc-
cluded. The area in full shadow, the umbra, is the region
with no unoccluded line to any of the surface area of the
light. The area in partial shadow, the penumbra, has a view
of some, but not all, of the light. Areas with no shadow
have an unobscured view of the whole light. Monte Carlo
renderers create soft shadows by averaging over multiple
paths from a fragment to different sampled locations on the
surface of the light. Real-time, deterministic soft shadows
create this effect by approximating the level of partial oc-
clusion at each fragment.

We approximate the penumbra region using an existing
technique where one constructs a cone between the light
source and receiving fragment, where one end of the cone
is the outer edge of the umbra, and the other edge of the
cone is the outer edge of the penumbra [11]. The amount
of direct light received, which we refer to as τ ∈ [0, 1], is
found by checking where in the penumbra cone a fragment
falls. We define τ = 0 at the inner edge of the cone, and
τ = 1 at the outer edge.

3



Figure 4. Frames from the forward pass of our differentiable soft shadow renderer.

The cone size is picked such that the penumbra size
W at the receiver produced by a true sphere light, shown
in Figure 3a, is maintained in the approximation, shown
in Figure 3b and c. The paper introducing this technique
derived that the diameter W is maintained at the receiver
when the cone diameter at the occluder is given the value
b = zrec−zocc

zrec
. To produce a penumbra that extends both

into and out of the hard shadow region, the penumbra cone
is centered at the edge of the occluder (Figure 3b). To only
extend the hard shadow region without intruding into it, the
edge of the occluder is used as the edge of the cone (Fig-
ure 3c). We choose to extend the hard shadow region (an
“outer penumbra”), as this allows a shadow map to be used
to efficiently check whether a fragment is in the umbra or
not.

With only an outer penumbra, τ can be calculated by
measuring the distance d between the edge of the occluder
and the line from the receiving point and the light using the
formula τ = d

b . When the receiving point is at the outer
edge of the cone, d = b and τ = 1, indicating full lightness.
At the inner edge of the cone, d = 0, so τ = 0 and no direct
light is received. With multiple occluders, we take τmin
over all occluders. To make this differentiable, we again
use a soft minimum, but only over the triangles T which are
closer to the light source than the receiving triangle. This
value, representing the partial occlusion of the frontmost
fragment to the light, is then stored in a penumbra map as
P [i, j], an example of which is shown in Figure 5.

P [i, j] =

∑
t∈T i

j
τt exp(−τtγ)∑

t∈T i
j
exp(−τtγ)

, (9)

T ij = {t | zt < S[i, j] + β} (10)

Finally, to calculate the lightness sij of a fragment for
triangle t in the scene using soft shadows instead of hard
shadows, one makes use of both the shadow map S and
the penumbra map P . Like with hard shadows, Gaussian
weights are used to smoothly sample the map, but where the
penumbra value is multiplied by the sigmoid of the shadow

Figure 5. An example of a penumbra map, showing a soft shadow
around an occluder.

value. This is interpreted as multiplying the amount of light
that would be received for the frontmost fragment by the
probability that the fragment in question is in front.

sij,t =

W∑
i=0

H∑
j=0

λi,jP [i, j] sigmoid

(
1

γs
(S[i, j]− dij,t + β)

)
(11)

Like before, this shadow term is used as a multiplier for
the direct light received at the fragment.

4. Evaluation
To test forward rendering, we rendered a 360◦

turnaround animation of a sphere on a plane lit by a single
light. A subset of the frames from this animation is shown
in Figure 4. It took 1m44s to render the whole animation,
consisting of 90 frames. Rendering the same scene using
only hard shadows takes 33s, and rendering without shad-
ows takes 1s.

To test the backwards pass, we would like to optimize
the shape of an object based on the shadow it casts. If one
were to optimize shape based on its hard shadow on a flat
surface, this can be tested indirectly by placing a camera
at the location of the light source and pointing it at the ob-
ject in question and looking at the silhouette produced. We

4



Figure 6. Top: target silhouettes for the front and side view of an
object. Bottom: the optimized silhouettes of the object.

Figure 7. The scene setup used for gradient evaluation.

use this test as a performance baseline. Using two cameras
aimed at the front and side of a sphere, we use intersection-
over-union loss between the captured silhouettes and target
silhouettes we provide to optimize the vertex positions of
the sphere. The result of this optimization is shown in Fig-
ure 6.

If shadows are not hard or if the camera is placed at an
angle to a non-flat surface, the previous setup will not work.
To test the ability to optimize a shape based on its shadows
directly, we created the test scene shown in Figure 7. In the
center is a shape we wish to optimize, which begins as a
sphere. Lights are placed on two perpendicular sides of the
shape. For each light, a camera is placed between the shape
and the wall so that the image from the camera will be of
the shape’s shadow. Target images are provided that each
camera image will be compared to using L2 loss. Gradients
from the sum of these losses are used to adjust the vertex
positions of the sphere. Note that while this scene setup
does not use non-flat surfaces or non-perpendicular camera
angles, the same underlying shadow gradients must exist to
enable optimization.

Due to time constraints, we were not able to complete
our implementation of the gradients for soft shadows, so
while the test runner script is in place, we leave running this
test for future work.

5. Discussion

We notice that inclusion of hard and soft shadows has
a significant effect on render time. We believe this is an
unavoidable cost of rendering a smoothly differentiable im-
age. If one removes the sigmoid function when comparing
the depth of a fragment to the value stored in the depth map
and instead use hard 0-or-1 occlusion, the render time of
the animation if Figure 4 reduces to a third of its previous
render time. Removing the Gaussian smoothing when sam-
pling from the depth and penumbra maps reduces the render
time to mere seconds. The information locality that makes
traditional shadow rendering efficient necessarily must be
removed in order to have gradients that account for small
changes that might result in different map samples being
used.

While we were able to produce images that look visu-
ally correct, we were not able to test how well our differ-
entiable soft shadows work for use in optimization. This is
largely due to the fact that Soft Rasterizer is implemented
as a custom CUDA kernel, meaning that gradients must be
manually computed. Future work includes the completion
of our partially-implemented backwards pass. To test that
it is implemented correctly, we would like to compare our
computed gradients with approximated gradients using fi-
nite differences of forward pass values. After ensuring that
the gradients are correct, we would then like to run the
shadow optimization test described in the Evaluation sec-
tion.

References
[1] John Amanatides. Ray tracing with cones. SIGGRAPH Com-

put. Graph., 18(3):129–135, Jan. 1984.
[2] Robert L. Cook, Thomas Porter, and Loren Carpenter.

Distributed ray tracing. SIGGRAPH Comput. Graph.,
18(3):137–145, Jan. 1984.

[3] Michael Herf and Paul S. Heckbert. Fast soft shadows. In
ACM SIGGRAPH 96 Visual Proceedings: The Art and Inter-
disciplinary Programs of SIGGRAPH ’96, SIGGRAPH ’96,
pages 145–, New York, NY, USA, 1996. ACM.

[4] Douglas R. Hofstadter. Godel, Escher, Bach: An Eternal
Golden Braid. Basic Books, Inc., USA, 1979.

[5] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3D mesh renderer. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

[6] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-
nen. Differentiable Monte Carlo ray tracing through edge
sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia),
37(6), 2018.

[7] Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft ras-
terizer: A differentiable renderer for image-based 3D reason-
ing, 2019.

[8] Matthew M. Loper and Michael J. Black. OpenDR: An
approximate differentiable renderer. In Computer Vision –

5



ECCV 2014, volume 8695 of Lecture Notes in Computer Sci-
ence, pages 154–169, Sept. 2014.

[9] N. J. Mitra and M. Pauly. Shadow art. ACM Trans. Graph.,
28(5), 2009.

[10] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wen-
zel Jakob. Mitsuba 2: A retargetable forward and inverse ren-
derer. ACM Trans. Graph. (Proc. SIGGRAPH Asia), 38(6),
Dec. 2019.

[11] Steven Parker, Peter Shirley, and Brian Smits. Single sample
soft shadows. Technical report, 1998.

[12] Helge Rhodin, Nadia Robertini, Christian Richardt, Hans-
Peter Seidel, and Christian Theobalt. A versatile scene model
with differentiable visibility applied to generative pose esti-
mation. In Proc. 2015 ICCV, 2015.

[13] Lance Williams. Casting curved shadows on curved surfaces.
In Proceedings of the 5th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’78, page
270–274, New York, NY, USA, 1978. Association for Com-
puting Machinery.

6


