
Automatic Secondary Motion with Dynamic Kelvinlets

JASMEET SINGH and DAVE PAGUREK

Fig. 1. Frames of deformations due to generated Kelvinlet forces superimposed over primary motion frames.

Dynamic Kelvinlets [De Goes and James 2018] model the time-varying elastic

deformations of objects in response to input forces. Videos showing Dynamic

Kelvinlets in action demonstrate how it adds an extra level of realism to

animations by introducing a secondary motion. A system using Dynamic

Kelvinlet deformation is implemented to verify that it can achieve visually

plausible secondary motion at real-time simulation rates. A framework to

generate Dynamic Kelvinlets automatically is also implemented. It adds

secondary motion to objects given skeletal animation keyframes for a model

using linear blend skinning.

1 INTRODUCTION
Physically-based animations are widely used in computer graphics

due to the realism of the resulting motion and their ease of use

compared to manual animation of the same level of detail. However,

physically-based simulations are computationally cumbersome due

to the necessity of numerical solves and the accompanying stabil-

ity conditions. There is additionally a monotonous setup phase for

artists employing such techniques, usually involving the generation

of an appropriate volumetric mesh for the simulation. Also, control-

ling the output of such a simulation is difficult. Generally, several

simulations need to be run with different set of input parameters

to get the desired result. Hence, a simpler method to simulate sec-

ondary deformations would streamline the process of generating

animations.

Our goal is to provide a system through which artists can auto-

matically add secondary motion to a standard keyframed animation

using linear blend skinning bones. In this paper, we implement such

a system based upon Dynamic Kelvinlets [De Goes and James 2018],

an extension of elastostatic regularized Kelvinlets [De Goes and

James 2017]. The paper proposing Dynamic Kelvinlets derives novel

fundamental solutions of elastodynamics for spatially regularized

and time-varying forces applied to an infinite continuum. This re-

sults in wave-like deformations through a medium. The method has

the following prime advantages over conventional physically-based

simulation methods:

• No geometric discretization is required

• The solution is closed-form, so no computationally intensive

solve is required

• Displacement at a time ti does not depend on the previous

time step ti−1, so there are no stability conditions due to

accumulated error over time

• As the displacements of vertices are not correlated, they can

be calculated in parallel on the GPU in real time

We implement the impulse Kelvinlet and push Kelvinlet responses
of an object, which correspond respectively to the responses to

Dirac delta function and Heaviside function force distributions over

time. We use the accelerations of vertices in the input keyframes

to generate Kelvinlets. We then examine how this technique can

generate visually accurate secondary motion in real-time. The tech-

nique is specifically suited to scenarios involving jiggling, denting,

ripples, and blasts.

2 BACKGROUND
Deformation of an infinite 3D medium formed by an isotropic and

homogeneous elastic material are considered in the Dynamic Kelvin-

lets paper. Fundamental solutions are derived for the linear elasticity

equation, where b is a time-varying external body force,m is the

mass density, µ is the elastic shear modulus indicating the mate-

rial stiffness, and v is the Poisson ratio that controls the material

compressibility:

m∂t tu = µ∆
u

1 − 2v
∇ (∇ · u) + b

This equation is also called the elastic wave equation as it resem-

bles the wave equation. It has an additional divergence term that

restricts large volume changes. The point of application of force acts

as the source for the waves and they radiate in all directions towards

2 • Singh and Pagurek

infinity. Two kinds of waves are generated. The first is the pressure

wave which represents the volume oscillation in space and time. It

depends on both the Poisson ration and the elastic shear modulus.

The pressure wave travels as a longitudinal wave in the medium.

The second wave is the shear wave. It produces divergence free

displacements in the transverse direction. This wave only depends

on the shear modulus of the medium. The combined response of

these two waves gives us the material response to a regularized

force in 3D space.

The regularization of the Kelvinlet force produces a density func-

tion ρ based on the amount of regularization ϵ and the radius r
away from the force centre:

ρ(r) =
15ϵ4

8π (r2 + ϵ2)7/2

Plots of different amounts of regularization are shown in Figure 2.

Regardless of the value of ϵ , the total amount of force applied to the

continuum is preserved:∭
R3

ρ

(√
x2 + y2 + z2

)
dx dy dz = 1

Fig. 2. Force density functions using different amounts of regularization.

We chose to implement these fundamental solutions for impulse

and push response on a body. The force for an impulse is modeled as

a regularized Dirac δ (t) function while the force for push is modeled

as a Heaviside function H (t).

3 METHOD

3.1 Framework
Our implementation [Singh and Pagurek 2019] is written in C++ us-

ing the OpenFrameworks library [Ope 2018], a wrapper for OpenGL

that provides mesh data structures. Starting from an initial mesh,

we apply an impulse or push force to it at a given location using

our DisplacedMesh class, which is responsible for simulating and

displaying the result. It implements the solution to the linear elasto-

dynamics equation in C++ for calculation on the CPU. Additionally,

since the displacement for each vertex has no dependence on the dis-

placement of any other vertex, the calculation is also implemented

as a step in the vertex shader on the GPU. In both cases, it produces

offsets for the original mesh vertices given their initial locations and

the elapsed time. These offsetted vertices are then passed through

the rest of the OpenGL pipeline to be rendered to the screen.

3.2 Automatic Secondary Motion
Given the ability to simulate the response of a mesh to a Kelvinlet

force, we then need a way to generate these forces automatically

from an input animation. Each frame, our system follows four steps:

• For each vertex X in the mesh, find its location x for the

current frame using the transformationϕ(X) from the frame’s

bone positions.

• Approximate Üx for all vertices using their locations from the

past two frames of animation.

• Generate an impulse Kelvinlet for each x given its correspond-

ing Üx .
• Iteratively merge Kelvinlets that plausibly would have re-

sulted from a single source impulse.

The algorithm is described at a high level in Algorithm 1.

The generation step creates one Kelvinlet per vertex. The iterative

merging step is a performance optimization, reducing the number

of new Kelvinlets added each frame to a more reasonable number.

Impulse Kelvinlets may be removed once they have been simulated

for a sufficient length of time, as their influence has likely reached

a steady state. Our tests pick merging parameters to maintain a

maximum of 100 Kelvinlets at a time.

When generating initial per-vertex Kelvinlets, we refer to New-

ton’s Second Law, F =m Üx , to obtain a direction and magnitude for

the impulse force vector. We approximate that the user-provided

mass of a mesh is evenly distributed across its vertices when picking

a value form. We pick a level of regularization ϵ such that there is

a force exactly equal to F at the location of the vertex:

ρ(0) = F

F
15ϵ4

8π (02 + ϵ2)7/2
= F

ϵ =

(
15

8π
− 1

)
4/7

ϵ ≈ 0.8

We thenmerge Kelvinlets.We only want to merge them if they are

nearby and have near parallel force vectors. To check for closeness,

we compute an approximate radius of the Kelvinlet’s influence, only

allowing Kelvinlets to merge if there is an intersection between the

spheres produced by these radii. We pick the radius at which force

magnitude drops to a low value (we use 0.1):

∥Fρ(r)∥ = 0.1

15ϵ4∥F ∥

8π
(
r2 + ϵ2

)
7/2
= 0.1

r =

√(
15ϵ4∥F ∥

0.1 · 8π

)
2/7

− ϵ2

We additionally enforce Kelvinlet alignment by only allowing

them to merge when F̂1 · F̂2 > 0.5. If these conditions are met,

then we compute the properties of the merged Kelvinlet. We aim to

preserve the total amount of force, and since the space integral of

regularized force varies only based on the scale of the force applied

at the centre, this constrains the combined force magnitude. We

make combined force direction a linear combination of the input

Automatic Secondary Motion with Dynamic Kelvinlets • 3

force directions, weighted by the total amount of force in each. We

use a similar linear combination to produce the new force centre x ′.
This gives us:

∥F ′∥ = ∥F1∥ + ∥F2∥

F̂ ′ =
∥F1∥F̂1 + ∥F2∥F̂2
∥F1∥ + ∥F2∥

x ′ =
∥F1∥x1 + ∥F2∥x2
∥F1∥ + ∥F2∥

Finally, we also need to pick a level of regularization ϵ ′ for the
combined Kelvinlet. Ideally, it should regularize more the farther

away the two force centers are, allowing the influence of the Kelvin-

let to spread out and reach both. This leads us to the following

formula, which augments a linear combination with a distance term:

epsilon′ =
∥F1∥ϵ1 + ∥F2∥ϵ2 +min{∥F1∥, ∥F2∥}∥x1 − x2∥

∥F1∥ + ∥F2∥
(1)

Figure 3 shows how the variation in the waveforms of two input

Kelvinlet forces (in red) affects the resultant combined Kelvinlet

force (in blue).

4 RESULTS

4.1 Stability
One of the benefits of Dynamic Kelvinlet based motion is that there

is a closed-form solution for displacement, meaning there will not be

any error accumulation or instability over time due to the integration

scheme. However, within a single frame, there are still issues of

stability due to numerical precision. This is largely due to the fact

that some of the intermediate steps in calculating displacement

include division by a factor of r3. The paper includes a formula for

the limit of displacement as r → 0 to avoid division by 0 directly

at the force application centre, but near the centre, if one uses the

limit formula, it is equivalent to treating the whole neighbourhood

around the centre as a rigid body. If one does not use the limit

formula, one must deal with significant loss of precision. Using

double precision floats and a single fourth-order Runge-Kutta (RK4)

step, the paper treats a radius of 1e-4 around the centre as a rigid

body. Since our implementation runs on graphics hardware in a

shader, we are limited to single precision floats. We find that with a

radius of 1e-2 and four RK4 steps, there is no noticeable precision

error.

4.2 Performance
Multiple versions of the Dynamic Kelvinlet system were imple-

mented to assess how truly real-time it can be. As noted in Section

4.1, different implementations require different numbers of RK4

steps depending on the precision of the numbers used in the calcu-

lation. Profiling a CPU-based implementation using Linux’s perf
showed that most of the time was being taken by power function

computations. Hence, a GPU-based version was also implemented.

We only compare implementations without visual artifacts.

Table 1 shows the resulting frame rate when our different imple-

mentations are run on a late-2015 Macbook Pro. Our CPU-based im-

plementations use a single core, and the GPU-based implementation

uses the device’s onboard Intel Iris Graphics 6100 chip. The reduced-

size Stanford Dragon [Laboratory 1996] mesh is used, which has

(a)

(b)

(c)

(d)

Fig. 3. Demonstration of combining Dynamic Kelvinlets. Two Kelvinlets,
shown in red are combined to form the resultant Kelvinlet, which is shown
in blue. The value of regulariztion ϵ for the initial Kelvinlets is 1 here. The
value of regularization for the resultant combined Kelvinlet is obtained by
solving equation 1. Also, the location of the centre of the combined force is
taken as the weighted mean of the initial forces. Lastly, the magnitude of the
combined force is takes so as to conserve the area under the regularization
curve. (a)-(d) show how the initial force waveforms affect the resultant
Kelvinlet force.

4 • Singh and Pagurek

Fig. 4. Catastrophic precision error around the impulse centre.

Algorithm 1 Overall secondary motion generation algorithm

1: procedure GenerateKelvinlets(M : Mesh)
2: X : [x1, ...,xn] ← GetVertexPositions(M)
3:

ÜX : [Üx1, ..., Üxn] ← GetVertexAccelerations(M)
4: K ← {} ▷ Initialize set of new Kelvinlets
5: for i ∈ {1, ...,n} do ▷ Add a Kelvinlet for each vertex
6: ki ← MakeKelvinlet(xi , Üxi)
7: K ← K ∪ {ki }

8: P ←
(K
2

)
▷ Get pairs to possibly merge

9: for (ka ,kb) ∈ P do
10: if dist(ka ,kb) < dmax ∧ angle(ka ,kb) < amax then
11: k ′ ← MergeKelvinlets(ka ,kb)
12: K ← K \ {ka ,kb } ▷ Remove original Kelvinlets
13: P ← {P : (kc ,kd) | kc ,kd ∈ K} ▷ ...and their pairs
14: P ← P ∪ {k ′} × K ▷ Add pairs with merge result
15: K ← K ∪ {k ′} ▷ Add the merge result itself

return K
16: procedure Update(T : Timeline, t : N)
17: Xt−2, Xt−1, Xt ← GetVerticesAtTimes(T , {t−2, t−1, t})
18:

ÛXt−1, ÛXt ← Xt−1 − Xt−2, Xt − Xt−1
19:

ÜXt ← ÛXt − ÛXt−1
20: M ← MeshWithAccelerations(Xt , ÜXt)
21: K

all
← K

all
∪ GenerateKelvinlets(M)

22: Display(M,K
all
) ▷ Display mesh using displacement shader

Device Precision RK4 Steps FPS
CPU double 1 11.8
CPU single 4 3.8
GPU single 4 55.6

Table 1. Comparison of frame rates, in frames per second (FPS), of different
Dynamic Kelvinlet implementations, with two Kelvinlets active.

5205 vertices. Two Kelvinlet forces, one push and one impulse, are

active on the mesh. The simulation frame rate is capped at 60 frames

per second due to the limitations of the platform.

Even with 4 RK4 steps, the GPU-based implementation achieves

significantly higher frame rates, nearly keeping up with the maxi-

mum platform refresh rate. This result supports the original paper’s

claim that the system can run in real time.

We also tested performance with multiple Kelvinlets influencing

the mesh, which happens in practice when automatically adding

Kelvinlets to an animation. If too large a number of Kelvinlets are

required, the shader will not compile, as only 1024 registers will

reliably be presentwhen compiling the shader [Wiki 2019]. In our im-

plementation, we can support 203 Kelvinlets before, in conjunction

with other uniforms required by the shader, this value is surpassed.

Using an NVIDIA GeForce GTX 1660 GPU, a target frame rate of

60fps is maintained with 203 active Kelvinlets.

4.3 SimulationQuality
Although Dynamic Kelvinlets use physics to compute displacements

over a field, real meshes are not infinite fields: they have boundaries

and are not connected by an invisible, uniform continuum. To assess

how plausible results look despite this assumption, we compare

Kelvinlet forces applied to a continuum with a more traditional

physics simulation of the application of a roughly equivalent force

on a deformable body without this assumption.

We used the Bullet Physics [Bul 2018] simulator packaged with

Blender 2.8 [Ble 2019]. Thismodels themesh as amass-spring system

with springs along the edges of the mesh. A direct comparison

with Dynamic Kelvinlets is not entirely possible because the two

systems use different models. A single Dynamic Kelvinlet has a

position, force, and amount of regularization; in Bullet, there is a

force, position, and force field shape. The field shape defines the

direction and magnitude of force for each point in space. Field shape

options include vectors facing away from a point, vectors facing

away from a line, vectors normal to a plane, and vectors pointing

away from an arbitrary surface. The best analogue to a regularized

Kelvinlet force in Bullet is a force field emanating from a point with

an exponential distance falloff. For material properties, the Dynamic

Kelvinlets system uses stiffness and compressibility; Bullet uses

mass, spring stiffness, and friction. Once a force is created in Bullet,

the material properties are manually tweaked to attempt to best

match the Dynamic Kelvinlet response.

Fig. 5. Kinetic energy over time present in the Dynamic Kelvinlet and Bullet
simulations of the application of a single regularized impulse.

Immediately after the application of an impulse, the displacement

in the neighbourhood of the impulse centre deforms similarly in

the two systems. As time progresses, Bullet and Dynamic Kelvinlet

Automatic Secondary Motion with Dynamic Kelvinlets • 5

responses diverge significantly. The most noticeable difference is

that Bullet’s mass-spring model continues to oscillate long after the

impulse has been applied, whereas the Dynamic Kelvinlet response

has a single pressure wave and a single shear wave. Figure 5 shows

the kinetic energy over time for both simulations, communicating

how the Bullet simulation continues moving for longer than the Dy-

namic Kelvinlet simulation. Note that since spring energy internal

to the Bullet simulation is inaccessible when treated as a black box,

only kinetic energy is shown rather than total energy of the system.

To assess the impact of the continuum assumption made by Dy-

namic Kelvinlets, we test on the Stanford Dragon [Laboratory 1996]

as a true wave would have to travel through its winding body rather

than propagating directly outwards from the force centre as it would

in a continuum with no gaps in space (see Figure 6). While the con-

tinuum approximation produces inaccuracies on sharp, targeted

forces, with large enough regularization of the impulse force, there

is not much noticeable difference in displacement wave propagation

between the continuum approximation and the mass-spring model.

This is because the regularization spreads the force out enough that

it has some influence across spatial gaps directly, without needing

to propagate through the volume of the mesh.

The response of force on soft bodies is usually perceived as a

wave traveling through the body. Depending on the properties of the

soft body, the dynamics might change, but the wave-like motion is

well known. Spring-based models tend to give an oscillatory motion

about the original location, which can differ from real life soft bodies

when there are insufficient damping parameters. Dynamic Kelvinlets

have an advantage over spring based methods for such cases, where

erring on the side of having too few oscillations is preferable. This

also results in more easily controllable responses, as the influence of

a single force has a tighter bound in time, which can be preferable

for artists and animators.

Another point of note is that the input to Dynamic Kelvinlets

includes the material properties of the soft body rather than the

mass and the spring constants. Not only does that make the setup

of the simulation faster, it also makes it more intuitive as it is easier

to identify material properties than to identify the spring constants

for an object.

A final note is that the Bullet simulation ran at around 19 frames

per second on the CPU. This type of simulation has the capability of

achieving decent performance, but its ability to parallelize further is

limited due to information dependencies in steps of the simulation

algorithm.

4.4 Secondary MotionQuality
To analyze the quality of the generated Kelvinlet-based secondary

motion, we produced a numbermodels with linear blend skinned pri-

mary animation. These models and animations were passed through

our system to produce real time output. To illustrate the effect of

the generated Kelvinlets on the meshes, some frames are shown in

Figures 1 and 7. The resulting animations themselves can be viewed

in our implementation on Github [Singh and Pagurek 2019].

It is first important to clarify what “primary motion” entails here.

By analogy to other aspects of computer graphics, secondary motion

is to primary motion as texture is to geometry. In John Lasseter’s

paper describing the 12 Principles of Animation [Lasseter 1987],

secondary motion is “the action of an object resulting from another

action.” Secondary motion is necessarily smaller than and subor-

dinate to primary motion because its role in storytelling is to add

depth and realism and not to take focus away from the acting, which

is done by the primary motion. Lasseter states that if secondary

motion “conflicts, becomes more interesting, or dominates in any

way, it is either the wrong choice or is staged improperly.” Larger

actions that are arguably still the result of another action are likely

not secondary motion and instead fall into the definition of follow
through: the termination of an action. Segments of a character that

are attached to the part leading movement will “move at a slower

speed and ‘drag’ behind the leading part of the figure,” continuing

to move after the leading part has stopped. In our system, this is

considered part of primary motion and must be manually animated

in the linear blend skin keyframes.

As noted when discussing the Bullet physics simulation, Kelvin-

lets on their own do not produce oscillations. While this is a tech-

nical limitation of Kelvinlets, the addition of large-scale oscillation

where none is present in the input is likely not desired by animators.

The oscillation of bones in character animation typically is the re-

sult of follow through action as leading bones slow down and stop,

causing following bones to overshoot and bounce back. Being part

of primary motion, this is something we expect animators would

want control over and would prefer to specify in the input. The

secondary motion we produce instead takes the form of small waves

and ripples travelling through the mesh.

We find that our generated secondary motion is quite plausible for

dramatic movements. In such inputs, the likelihood that any given

part of the mesh surface will be undergoing some type of secondary

motion deformation is likely. This masks the fact that Kelvinlet

waves travel through empty space, so the continuum assumption

does not produce any distracting artifacts. For subtler movements

such as a walk cycle, artifacts from the continuum assumption

become more noticeable, especially when material properties are

chosen that exaggerate the squash and stretch.

5 FUTURE WORK
The largest issues with our system come from the continuum as-

sumption made by Kelvinlets. This can potentially be overcome by

discretizing the mesh into segments through which waves can prop-

agate freely without travelling through space unrealistically. With

each segment simulated with their own separate sets of Kelvinlets,

no waves would be found travelling through empty space. Bound-

ary conditions would need to be addressed by adding Kelvinlets to

neighbouring segments as waves reach segment intersections.

Our current system assumes that the mass of a mesh is equal to

the user-provided mass of the whole mesh divided evenly across

its vertices. This firstly assumes that vertex density in the mesh is

propoertional to mesh mass, which may not be true. Secondly, this

makes the assumption that the mass of the mesh is spread across

its surface, which also may not always mirror reality, where the

movement on the surface is a result of the movement throughout the

volume. A mechanism to allow for correction of both issues would

be to specify the effective mass of a vertex as an additional vertex

6 • Singh and Pagurek

10 frames after impulse

Dynamic Kelvinlet

20 frames after impulse

Dynamic Kelvinlet

Bullet Physics Bullet Physics

Fig. 6. SimulationQuality comparison between Dynamic Kelvinlet and Bullet Physics for an impulse. Arrows show the amount of motion at different time
delays after an impulse. Note that the Bullet simulation continues to oscillate after the Dynamic Kelvinlet simulation has reached a steady state. A video
showing the comparison can be found in the implementation repository [Singh and Pagurek 2019].

attribute, possibly through UV mapping. This allows mass to be

easily redistributed. It does not on its own account for the volume

beneath the mesh surface, but it would provide a mechanism to

allow an artist to increase or decrease the effective mass at a vertex

to more closely match the intended material properties.

It should also be mentioned that the system does not take into

account undeformed objects. A deformed object may end up clipping

through other objects in a scene, if any are present. Future work

can be done to attempt to address this issue in a way that does not

prevent efficient implementation of the GPU.

REFERENCES
2018. Bullet Physics SDK 2.88. https://github.com/bulletphysics/bullet3

2018. OpenFrameworks 0.10.1. https://openframeworks.cc

2019. Blender 2.81. https://www.blender.org/download/releases/2-81

Fernando De Goes and Doug L. James. 2017. Regularized Kelvinlets: Sculpting Brushes

Based on Fundamental Solutions of Elasticity. ACM Trans. Graph. 36, 4, Article 40
(July 2017), 11 pages. https://doi.org/10.1145/3072959.3073595

Fernando De Goes and Doug L. James. 2018. Dynamic Kelvinlets: Secondary Motions

Based on Fundamental Solutions of Elastodynamics. ACM Trans. Graph. 37, 4, Article
81 (July 2018), 10 pages. https://doi.org/10.1145/3197517.3201280

Stanford Computer Graphics Laboratory. 1996. Stanford 3D Scanning Repository.

http://www-graphics.stanford.edu/data/3Dscanrep

John Lasseter. 1987. Principles of Traditional Animation Applied to 3D Computer

Animation. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 35–44. https://doi.org/10.

1145/37402.37407

Jasmeet Singh and Dave Pagurek. 2019. Dynamic Kelvinlets. https://github.com/

davepagurek/DynamicKelvinlets

OpenGL Wiki. 2019. Uniform (GLSL) — OpenGL Wiki,. http://dev.khronos.org/opengl/

wiki_opengl/index.php?title=Uniform_(GLSL)&oldid=14539 [Online; accessed 7-

December-2019].

A CONTRIBUTIONS
Dave set up the framework for the project in C++ and GLSL and

implemented impulse Kelvinlets in both. He created an equivalent

test case both in the Dynamic Kelvinlets project and in Blender

using the Bullet physics simulator. He set up the pipeline to process

animated meshes and generate Kelvinlets from them each frame. He

investigated the behavior of regularized Kelvinlet forces and created

formulas for approximating two Kelvinlets with a single Kelvinlet.

He modeled, rigged, and animated the animated meshes used for

tests in this report using Blender.

Jasmeet implemented push Kelvinlets in C++, generalizing both

types of Kelvinlets under a common interface. He later implemented

push Kelvinlets in GLSL after profiling the C++ implementation to

identify whether or not there were fixable bottlenecks. He added

https://github.com/bulletphysics/bullet3
https://openframeworks.cc
https://www.blender.org/download/releases/2-81
https://doi.org/10.1145/3072959.3073595
https://doi.org/10.1145/3197517.3201280
http://www-graphics.stanford.edu/data/3Dscanrep
https://doi.org/10.1145/37402.37407
https://doi.org/10.1145/37402.37407
https://github.com/davepagurek/DynamicKelvinlets
https://github.com/davepagurek/DynamicKelvinlets
http://dev.khronos.org/opengl/wiki_opengl/index.php?title=Uniform_(GLSL)&oldid=14539
http://dev.khronos.org/opengl/wiki_opengl/index.php?title=Uniform_(GLSL)&oldid=14539

Automatic Secondary Motion with Dynamic Kelvinlets • 7

Fig. 7. Frames from linear blend skinned animations with frames of Kelvinlet-induced deformation motion superimposed.

code to export image sequences and convert them to video files.

When automatically generating secondary motion, he investigated

the magnitude of the forces involved with common actions and

experimented with the parameters in Kelvinlet generation to find

ones that work reasonably for these actions.

Conception of experiments and analysis of their results was a

collaborative effort.

	Abstract
	1 Introduction
	2 Background
	3 Method
	3.1 Framework
	3.2 Automatic Secondary Motion

	4 Results
	4.1 Stability
	4.2 Performance
	4.3 Simulation Quality
	4.4 Secondary Motion Quality

	5 Future Work
	References
	A Contributions

